Multiscale segmentation and anomaly enhancement of SAR imagery
نویسندگان
چکیده
We present efficient multiscale approaches to the segmentation of natural clutter, specifically grass and forest, and to the enhancement of anomalies in synthetic aperture radar (SAR) imagery. The methods we propose exploit the coherent nature of SAR sensors. In particular, they take advantage of the characteristic statistical differences in imagery of different terrain types, as a function of scale, due to radar speckle. We employ a class of multiscale stochastic processes that provide a powerful framework for describing random processes and fields that evolve in scale. We build models representative of each category of terrain of interest (i.e., grass and forest) and employ them in directing decisions on pixel classification, segmentation, and anomalous behaviour. The scale-autoregressive nature of our models allows extremely efficient calculation of likelihoods for different terrain classifications over windows of SAR imagery. We subsequently use these likelihoods as the basis for both image pixel classification and grass-forest boundary estimation. In addition, anomaly enhancement is possible with minimal additional computation. Specifically, the residuals produced by our models in predicting SAR imagery from coarser scale images are theoretically uncorrelated. As a result, potentially anomalous pixels and regions are enhanced and pinpointed by noting regions whose residuals display a high level of correlation throughout scale. We evaluate the performance of our techniques through testing on 0.3-m resolution SAR data gathered with Lincoln Laboratory's millimeter-wave SAR.
منابع مشابه
Segmentation and Compression of SAR Imagery via Hierarchical Stochastic Modelling
To abate the enormous costs incurred in the transmission and storage of SAR data, we present here a seg-mentation driven compression technique using hierarchical stochastic modeling within a multiscale framework. Our approach to SAR image compression is unique in that we exploit the multiscale stochastic structure inherent in SAR imagery. This structure is well captured by a set of scale auto-r...
متن کاملMultiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm
A valid unsupervised and multiscale segmentation of synthetic aperture radar(SAR) imagery is proposed by a combination GA-EM of the Expectation Maximization(EM) algorith with the genetic algorithm (GA). The mixture multiscale autoregressive(MMAR) model is introduced to characterize and exploit the scale-to-scale statisticalvariations and statistical variations in the same scale in SAR imagery d...
متن کاملMultiscale SAR Image SegmentationusingWavelet - domain Hidden Markov Tree
We study the segmentation of SAR imagery using wavelet-domain Hidden Markov Tree (HMT) models. The HMT model is a tree-structured probabilistic graph that captures the statistical properties of the wavelet transforms of images. This technique has been successfully applied to the segmentation of natural texture images, documents, etc. However, SAR image segmentation poses a diicult challenge owi...
متن کاملHierarchical stochastic modeling of SAR imagery for segmentation/compression
There has recently been a growing interest in synthetic aperture radar (SAR) imaging on account of its importance in a variety of applications. One attribute leading to its gain in popularity is its ability to image terrain at extraordinary rates. Acquiring data at such rates, however, has drawbacks in the form of exorbitant costs in data storage and transmission over relatively slow channels; ...
متن کاملMultiscale SAR Image Segmentation using Wavelet domain Hidden Markov Tree Models
We study the segmentation of SAR imagery using wavelet domain Hidden Markov Tree HMT models The HMT model is a tree structured probabilistic graph that captures the statistical properties of the wavelet transforms of images This technique has been successfully applied to the segmentation of natural texture images documents etc However SAR image segmentation poses a di cult challenge owing to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 6 1 شماره
صفحات -
تاریخ انتشار 1996